Variables aléatoires discretes

1. Définitions . . . . . . . . . e e 1
1.1 Variable aléatoire . . . . . . . . . . e e e 1
1.2 Loi d’'une variable aléatoire . . . . . . . . . . . . ... 2
1.3 Loisusuelles . . . . . . . o oL 3

1.3.1 Loi uniforme finie (rappel) . . . . . . . . . 3
1.3.2 Loide Bernoulli (rappel) . . . . .. ... .. 3
1.3.3 Loi binomiale (rappel) . . . . . . . . . 4
1.3.4  Loi géométrique . . . . . . . . 4
1.3.5 LoidePoisson . . . .. . . . . . . e 4

2. Couples de variables aléatoires, indépendance. . . . . . . . . . . . . ... ... ... 5
2.1 Définition, lois . . . . . . . e 5
2.2 Indépendance . . . . . . . ... 6
2.3 Opérations . . . . . . . . . e 6

3. Espérance et variance . . . . . . .. L L L e 7
3.1 Espérance . . . . ... 7

3.1.1 Définition et espérance des lois usuelles . . . . . . .. ... ... ... ... ...... 7

3.1.2 Formule de transfert et propriétés de 'espérance . . . . . . .. .. .. .. ... ... 8

3.2 Variance . . . . . . . e e e e e e e 9
3.2.1 Deux inégalités . . . . . . . . e 9

3.2.2 Définition et propriétés . . . . . . .. L 10

3.3 Covariance . . . . . ... e e e e 11
3.4 Inégalités probabilistes . . . . . . . . L 12

4. Fonctions génératrices . . . . . . . . . oL e e e 13

Dans tout le chapitre, (2, o7, P) désigne un espace probabilisé, et E' un ensemble. Sauf mention contraire,
toutes les variables aléatoires considérées sont définies sur cet espace probabilisé (2, .o/, P).

1 Définitions

1.1 Variable aléatoire

[ Définition 1 — Variable aléatoire }

On appelle variable aléatoire discréte une application définie sur € telle que :

@ l’ensemble X (€2) des valeurs prises par X est au plus dénombrable ;

@ pour tout z € X (Q), I'image réciproque X ~1({z}) € &, i.e. est un événement. On le note généra-
lement (X = x), parfois {X = z}.

Si X: Q — E est une variable aléatoire discréte, pour tout A C E, X !(A) est un événement ! que 1'on
note (X € A).

Lorsque X est a valeurs réelles, on parle de variable aléatoire réelle, et pour x € R, on peut noter des
événements sous la forme (X > z) au lieu de (X € [x;400[), (X < z) au lieu de (X € |—o0;z[), et autres
analogues.

1. En effet, c’est la réunion des X_l({x}) pour z € A. Or cette réunion est au plus dénombrable puisque X () lest et
chaque élément est un événement d’apres la définition. On conclut par stabilité par union dénombrable d’une tribu.
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Exemple 2 — Premiere variable aléatoire ]

On lance deux dés discernables a quatre faces. On définit la variable aléatoire X comme la somme des
résultats des deux dés.

L’ensemble des valeurs prises par X est X(Q2) = ...

—

Définition 3 — Composition }

Soient X une variable aléatoire discréte et f une application définie sur X (). Alors f o X est une
variable aléatoire, notée f(X).

1.2 Loi d’une variable aléatoire

[ Définition 4 — Loi d’une variable aléatoire }

Soit X une variable aléatoire discrete.
On appelle loi de X Tlapplication Px: P(X(Q)) — [0;1]

A — P(X€A.
C’est une probabilité sur 1'espace probabilisable (X (€2), P(X(9))).

Pour connaitre Py, il suffit de connaitre P(X = z) pour tout z € X ().

Meéthode : « Donner la loi de la variable aléatoire X » consiste donc a donner :
@ l’ensemble X (2) des valeurs prises par X ;
@ la probabilité P(X = x) de chaque valeur x € X ().

Exemple 5 — Premiere loi J

On reprend la situation de I’exemple 2 et on suppose les deux dés équilibrés.
Pour i € [1;4], on note A; : « obtenir 7 avec le premier dé » et B; : « obtenir i avec le second dé ».

1. P(X=2)=...

2. P(X =3)=...

4. On a alors P(X >6) = ...

Notation : Si deux variables aléatoires X et Y ont méme loi, i.e. Px = Py, on note X ~ Y.
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Exemple 6 — On lance une piéce équilibrée, on note X la variable aléatoire égale a 0 si on obtient pile
et 1 si on obtient face.

On lance un dé non pipé, on note Xo la variable aléatoire égale a 0 si le résultat est pair et a 1 sinon.
Donner les lois de X1 et Xs.

Proposition 7 — Variables de méme loi et composition |

Soient X et Y deux variables aléatoires discrétes et f une application définie sur X (€2).
Si X ~Y alors f(X) ~ f(Y).

1.3 Lois usuelles

1.3.1 Loi uniforme finie (rappel)

[ Définition 8 — Loi uniforme }

On suppose F fini non vide et on note n = Card(E) € N*.

On dit que X suit la loi uniforme sur E, et on note X ~ % (E), si
@ X(Q)=FE; .
@ Ve eE, P(X=x)=—.

n

—

Exemple 9 — Donner quelques exemples typiques de v.a.r. suivant une loi uniforme. J

1.3.2 Loi de Bernoulli (rappel)

[ Définition 10 — Loi de Bernoulli ]

J

Soit p € [0;1]. On dit que X suit la loi de Bernoulli de paramétre p, et on note X ~ HB(p), si
© X(€) ={0,1};

@ P(X=1)=p (etdonc P(X =0)=1-p).

Interprétation : Lors d’une épreuve de Bernoulli, i.e. une expérience aléatoire ayant deux issues « suc-

R el 2 . e s 1 si succes,
cés » (de probabilité p) et « échec » (de probabilité 1 — p), X = o
0 si échec.

[ Exemple 11 — Donner quelques exemples typiques de v.a.r. suitvant une lot de Bernoulli.
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1.3.3 Loi binomiale (rappel)

[ Définition 12 — Loi binomiale }

Soient n € N* et p € [0;1]. On dit que X suit la loi binomiale de paramétres n et p, et on note
X ~ AB(n,p), si

@ X(Q)={0,1,...,n}=[0;n];

® Yk € [0;n], P(X = k) = (Z)pk(l —p)n

Interprétation : Lors d’une succession de n épreuves de Bernoulli identiques et indépendantes, chacune
de probabilité p de succes, X est le nombre de succes.

Exemple 13 — Donner deux exemples typiques de v.a.r. sutvant une loi binomiale.

1.3.4 Loi géométrique

[ Définition 14 — Loi géométrique J

Soit p € ]0;1[. On dit que X suit la loi géométrique de paramétre p, et on note X ~ ¥(p), si
@ X(Q)=N"=][1;+o0[;
® Vk e N*, P(X = k) = p(1 — p)*.

Interprétation : Lors d’une succession illimitée d’épreuves de Bernoulli identiques et indépendantes,
chacune de probabilité p de succes, X est le rang du premier succes.
Remarque. On vérifie que Z PX=k=...
kEX ()

[ Proposition 15 J
‘ Si X ~ %(p) alors, pour tout k € N*, P(X > k) = (1 — p)*.

Démonstration. Décomposer (X > k), utiliser la o-additivité et reconnaitre une somme géométrique. a

[ Exemple 16 — Donner deux exemples typiques de v.a.r. sutvant une loi géométrique.

1.3.5 Loi de Poisson

[ Définition 17 — Loi de Poisson }

Soit A > 0. On dit que X suit la loi de Poisson de paramétre A, et on note X ~ Z(A), si
@ X(Q)=N=1]0;+o00[;

A
k!

@VkeN, P(X=k) =e
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Interprétation : C’est la loi « des événements rares » : il s’agit souvent de décrire le nombre d’occur-
rences d’un phénomene dans un laps de temps ou d’espace donné. Par exemple, le nombre de connexions a
un serveur en une minute, le nombre de coquilles par page dans mon cours, le nombre de soldats de 'armée
prussienne tués accidentellement chaque année par des chevaux (Bortkiewicz 1898), etc.

Remarque. On vérifie que Z PX=k)=...
keX(Q)

2 Couples de variables aléatoires, indépendance

2.1 Définition, lois

[ Définition 18 — Couple de variables aléatoires, loi conjointe, lois marginales ]

e Un couple de variables aléatoires est une variable aléatoire a valeurs dans un ensemble produit. On
note P((X,Y) = (z,y)) par P(X =2,Y =y) ou P((X =z)N(Y =vy)).

e On appelle loi conjointe de X et Y (ou loi du couple (X,Y)) la loi de la variable aléatoire (X,Y),
c’est-a~dire la donnée de :

@ les ensembles X () et Y(Q);
@ la probabilité P((X = z) N (Y = y)) pour chaque couple (z,y) € X(Q) x Y(Q).
o On appelle lois marginales du couple (X,Y), les lois de X et de Y.

Si on connait la loi du couple (X,Y'), on peut toujours déterminer les lois marginales :

Méthode : Pour déterminer la loi de X a partir de celle du couple (X,Y), il suffit d’utiliser la formule
des probabilités totales avec le s.c.e. {(Y =y) |y € Y(Q)}.
De fagon symétrique, on obtient la loi de Y en considérant le s.ce. {(X =z) |z € X(Q)}.

A La réciproque est fausse : sauf en cas d’indépendance (cf paragraphe suivant), on ne peut pas déter-
miner la loi d’'un couple a partir de ses lois marginales.

Exemple 19 — Soit le couple (X,Y) de loi donnée par : ¥(i,j) € N2, P((X =i)N (Y =j)) =

e 211"
Déterminer la loi de X.

[ Définition 20 — Loi conditionnelle J

Soit A un événement. On appelle loi conditionnelle de Y sachant A la loi de Y sur 'espace probabilisé
(Q, o, Py).
Autrement dit, elle est définie par la donnée de :

1. Pensemble Y (2) des valeurs prises par Y ;

2. les probabilités P,(Y = y) pour tout y € Y (Q).
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2.2 Indépendance

[ Définition 21 — Variables aléatoires indépendantes ]

e Deux variables aléatoires discretes X et Y sont dites indépendantes, et on note X 1L Y, si I'une des
deux conditions suivantes est vérifiée :

L V(z,y) € X(Q) xY(Q), P(X =2)N (Y =y)) = P(X =2)P(Y =y);
2. Pour tous A C X(2) et B C Y(Q), les événements (X € A) et (Y € B) sont indépendants.

o Plus généralement, n variables aléatoires discretes (X7, ..., X,) sont dites (mutuellement) indépen-
dantes si I'une des deux conditions suivantes est vérifiée :

n

L W(a1, . am) € X1(Q) x - x Xn(Q), P(nl(xi - ;cz-)) _ [P = ).
= i=1

2. Pour toutes parties A1 C X1(Q), ..., 4, C X,,(Q2), on a I'égalité P((X; € A;)N---N(X, € 4,)) =
P(X1€A) x---x P(X, €A4,).

A Si n variables aléatoires discrétes sont indépendantes, elles sont deux & deux indépendantes, mais la
réciproque est fausse.

[ Exemple 22 — Somme de loi de Bernoulli (vu en PCSI) }

Si Xi,...,X, sont n variables aléatoires indépendantes, toutes de loi de Bernoulli de méme parametre p,
alors X1+ -+ X,, ~ #(n,p). Cela justifie 'interprétation de la loi binomiale comme le nombre de succes
lors de la répétition de n épreuves de Bernoulli indépendantes ayant chacune la probabilité p de succes.

Définition 23 — Suites de variables indépendantes, suites i.i.d. ]

—

Soit (X, )nen une suite de variables aléatoires discrétes sur 2.

e On dit que c’est une suite de variables aléatoires indépendantes si toute famille finie extraite de
cette suite est indépendante, ou de fagon équivalente, si pour tout k € N, la famille (Xy,...,X}) est
indépendante.

o On dit que c’est une suite i.7.d. (indépendantes identiquement distribuées) si c’est une suite de v.a.
indépendantes qui suivent toutes la méme loi.

Exemple 24 — Jeu de pile ou face infini }

La modélisation d’un jeu de pile ou face infini requiert 'utilisation d’une suite i.i.d. de variables aléatoires
de méme loi de Bernoulli.

2.3 Opérations

[ Proposition 25 — Fonctions de variables indépendantes J

o Soient X et Y deux variables aléatoires discrétes, f une fonction définie sur X (2) et g une fonction
définie sur Y(2). Si X 1L Y alors f(X) AL f(Y).

e Plus généralement, si X1, ..., X, sont des variables aléatoires discrétes indépendantes et fi,..., f, des
fonctions définies respectivement sur X (2), ..., X,,(£2), alors les variables aléatoires f1(X1),..., fn(Xn)
sont indépendantes.

Proposition 26 — Lemme des coalitions J

o Si les variables aléatoires X1, ..., X, sont indépendantes, alors pour tout r € {1,...,n}, les variables
aléatoires f(Xi,...,X,) et g(Xy41,...,X,) le sont aussi.
e Ce résultat se généralise au cas de plus de deux coalitions.
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Exemple 27 — Soient X1, Xo, X3, X4 quatre v.a.r. indépendantes qui suivent toutes une loi B(p) avec
p €10;1[. Pouri € {1,2,3}, on définit Y; = X; Xi+1.

1. Quelle est la loi des Y; 7

2. Y1 et Y3 sont-elles indépendantes 7

3. Y7 et Y5 sont-elles indépendantes ?

3 Espérance et variance

Dans cette partie, toutes les variables aléatoires considérées sont a valeurs réelles ou complexes.

3.1 Espérance

3.1.1 Définition et espérance des lois usuelles

[ Définition 28 — Espérance d’une variable aléatoire - cas positif ]

Soit X une variable aléatoire discréte positive, i.e. & valeurs dans [0 ; 400].
On appelle espérance de X le nombre

E(X)= Y aP(X=u),
zeX ()

avec la convention zP(X = x) = 0 lorsque z = 400 et P(X = 400) = 0.

Remarque. Dans ce cas positif, on peut éventuellement avoir E(X) = +oo. Selon le programme, « les
étudiants peuvent découper, calculer et majorer leurs sommes directement, la finitude valant preuve de som-
mabilité ».

[ Définition 29 — Espérance d’une variable aléatoire - cas général }

Soit X une variable aléatoire discréte a valeurs réelles ou complexes.

On dit que X est d’espérance finie si la famille (zP(X = z))_ ex(@) ot sommable, i.e. la série
Z |z| P(X = x) converge.
z€X(Q)

Dans ce cas on appelle espérance de X la somme de cette famille, 7.e. le nombre

E(X)= Y aP(X =u).
zeX ()

Remarque. Dans ce cas général, il faut montrer que I'espérance est finie avant d’entreprendre son calcul.

Remarque. Une v.a. qui prend un nombre fini de valeurs est toujours d’espérance finie.
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[ Vocabulaire 1

‘ Si X est une v.a. telle que E(X) existe et vaut 0, on dit que X est une variable centrée.

6
Exemple 30 — Soit Y une v.a. d valeurs dans N telle que pour tout n € N*, P(Y =n) = ()2 La
nm
variable Y est-elle d’espérance finie ¢
Proposition 31 — Espérance des lois usuelles J
o Si X est une v.a. constante, i.e. X(2) = {a} avec a € K, on a F(X) = a.
o Si X ~ %(p), alors E(X) = p.
o Si X ~ %(n,p), alors E(X) = np.
1
o Si X ~%9(p),alors E(X) = —.
p
o Si X ~Z(N),alors E(X) =\
Démonstration. 1+2. Découlent de la définition. 3. Utiliser la formule dite du capitaine k(}) = n(zj),
un glissement d’indice et le bindome de Newton. 4. Considérer la dérivée de la série entiere Y x* pour
r=1-—p. 5. Simplifier avec la factorielle puis glissement d’indice. d
Proposition 32 — Une formule dans le cas a valeurs dans N U {400} ]
Soit X une variable aléatoire discréte a valeurs dans N U {+oo}. Alors
+o00
E(X)=) P(X >n)
n=1
+o0o
Démonstration. Théoréme de Fubini apres avoir écrit P(X >n) = Y, P(X = k). Q
k=n

3.1.2 Formule de transfert et propriétés de I’espérance

[ Théoréme 33 — Formule de transfert }

Soient X une variable aléatoire discréte et f un application définie sur X (€2).
La variable aléatoire f(X) est d’espérance finie si et seulement si la famille (f(z)P(X = z))_ ex(o) o5t

sommable. Dans ce cas, on a

E(f(X)= > [f@PX=x)

zeX ()

Remarque. Si X? est d’espérance finie, d’apres la formule de transfert, F (X 2) = Z :cQP(X =z).
zeX(Q)
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Exemple 34 — On lance un dé équilibré d n faces et on note X le numéro obtenu. Calcule E(2X) ’

—

Proposition 35 — Propriétés de I'espérance }

Soient X et Y deux variables aléatoire discrétes.

1. Linéarité : si X et Y sont d’espérance finie et (A, u) € R?, alors AX + uY est aussi d’espérance
finie et on a

EMX 4+ uY) = AE(X) + pnE(Y).
2. Comparaison : si | X| <Y avec Y a valeurs positives et d’espérance finie, alors X est aussi d’espé-
rance finie.
3. Positivité : si X est a valeurs positives alors E(X) > 0.
4. Croissance : si X et Y sont a valeurs réelles, d’espérance finie et X <Y, alors E(X) < E(Y).
=0

5. Caractére quasi-défini : si X est positive et d’espérance nulle, alors I’événement (X ) est presque

sur.

Démonstration. 1. Théoréme de transfert avec la v.a. Z = (X,Y): Q — R% et f: (z,y) — Av + uy.
2. Définition et comparaison de séries a termes positifs. 3. Découle de la définition avec =z > 0 et
P(X =x)>0. 4.0naY — X > 0, utiliser 3 et la linéarité. 5. Une somme de termes positifs est
nulle ssi chaque terme est nul. On calcule alors P(X = 0) par passage au complémentaire et o-additivité. QO

[ Proposition 36 — Espérance d’'un produit de v.a. indépendantes ]

e Soient X et Y deux variables aléatoire discretes, indépendantes et d’espérance finie.

Alors XY est aussi d’espérance finie et E(XY) = E(X)E(Y).

e Plus généralement, pour n variables aléatoires discretes indépendantes et d’espérance finie, on a
E(X1 Xy X,) = E(X1)E(X2) - E(Xy).

Démonstration. Formule de transfert et théoréme de Fubini. d
A Deux variables aléatoires X et Y peuvent vérifier E(XY) = E(X)E(Y) sans que X et Y soient
indépendantes. C’est par exemple le cas si X ~ % (—1,0,1) et Y = X2,
3.2 Variance
Désormais et jusqu’a la fin du chapitre, on considére des variables aléatoires discrete a valeurs réelles

(on note parfois v.a.r.).

3.2.1 Deux inégalités

[ Lemme 37 — Espérance du carré J

‘ Si la variable aléatoire X2 est d’espérance finie, alors X est aussi d’espérance finie.

Démonstration. Inégalité classique |X| < §(1+|X|?), lindarité de 'espérance et comparaison (prop. 35). O
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Proposition 38 — Inégalité de Cauchy-Schwarz J

Soient X et Y deux v.a.r. telles que X? et Y2 sont d’espérance finie, alors XY est aussi d’espérance finie
et
[E(XY)]” < E(X?)E(Y?).

De plus, il y a égalité si et seulement si X et Y sont presque stirement proportionnelles.

Démonstration. o L’existence de E(XY') se montre de maniére analogue au lemme précédent a partir de
Vinégalité | X Y| < 2 (X2+Y?). o Pour I'inégalité, on considere le polynéme en X : P(\) = E((AX +Y)?)
qui est toujours positif donc de discriminant négatif ou nul. d

3.2.2 Définition et propriétés

[ Définition 39 — Variance ]

Si X2 est d’espérance finie, on définit sa variance V(X) et son écart-type o(X) par

V) =E((X - B(X))®) et o(X)=/V(X).

La variance est un indicateur de dispersion, elle mesure a quel point X est concentrée ou non autour de
son espérance.

Vocabulaire 2 J

On dit que X est réduite si elle admet une variance et V(X) = 1.

Proposition 40 — Formule de Kénig-Huygens }
Si X admet une variance, alors V(X) = E(X?) — E(X)?2.

Démonstration. De la définition de la variance, développer puis utiliser la linéarité de ’espérance. a

[ Proposition 41 — Non linéarité de la variance ]

Si X admet une variance alors, pour tout (a,b) € R? la variable aléatoire aX + b admet aussi une
variance et on a V(aX + b) = a®V(X).

Démonstration. A nouveau, partir de la définition de la variance et utiliser la linéarité de 'espérance. QO

X — B(X)
o(X)

Exemple 42 — Soit X une v.a.r. telle que o(X) > 0. Montrer que la v.a.r. Y = est centrée

réduite.
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Proposition 43 — Variance des lois usuelles J

o Si X est une v.a. constante, i.e. X(2) = {a} avec a € K, on a V(X) = 0.
o Si X ~ A(p), alors V(X) = p(1 —p).
e Si X ~ HA(n,p), alors V(X) = np(1l —p).
L-p
P
o Si X ~Z(N),alors V(X) = A

e Si X ~¥(p), alors V(X) =

Démonstration. Mémes techniques respectives que pour l'espérance. Pour les trois derniéres, il est plus
commode de calculer F(X (X — 1)) et remarquer que V(X) = E(X(X — 1)) + E(X) — B(X)?. a

3.3 Covariance

[ Définition 44 — Covariance }

Soient X et Y deux v.a.r. admettant une variance. On appelle covariance de X et Y le nombre
Cov(X,Y) = B([X - E(X)][Y - E(Y)).

Remarques.

1. Cette définition a bien du sens d’apres I'inégalité de Cauchy-Schwarz (prop. 38) appliquée aux variables
aléatoires X — E(X) et Y — E(Y) qui donne |Cov(X,Y)| < VV(X)V(Y).

2. Cov(X,Y) = Cov(Y, X), i.e. la covariance est symétrique.

3. Comme l'espérance est linéaire, la covariance est bilinéaire.
4. Cov(X, X) =V(X).

[ Proposition 45 — Formule a la Konig-Huygens et nullité en cas d’indépendance }

Soient X et Y deux v.a.r. admettant une variance. On a
Cov(X,Y) =E(XY)—- E(X)E(Y).

En particulier, si X et Y sont indépendantes, alors Cov(X,Y) = 0.

Démonstration.  Développement et linéarité de I'espérance a partir de la définition de la covariance.
e En cas d’indépendance, conséquence directe de la prop. 36. u

A La réciproque du dernier point est fausse : deux variables aléatoires peuvent étre de covariance nulle
sans étre indépendantes. Méme contre-exemple qu’apres la prop. 36.

[ Proposition 46 — Variance d’une somme finie }

e Soit X et Y deux v.a.r. admettant une variance. Alors X + Y admet une variance et
VIX+Y)=V(X)+2Cov(X,Y)+ V(Y).

En particulier, si X et Y sont indépendantes, on a V(X +Y) = V(X) + V(Y).
e Plus généralement, soient X7, ..., X,, des v.a.r. admettant une variance.

L OnaV(Xi+ -+ X,) =Y V(Xp)+2> Cov(X;, X;).
k=1

= 1<i<j<n

n
2. En particulier, si les v.a. sont deux a deux indépendantes, V(X; +--- + X,,) = Z V(Xk).
k=1

Démonstration. Simple calcul et dans le cas d’indépendance, conséquence de la prop. 45 a
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Exemple 47 — En utilisant [’exemple 22, retrouver la variance d’une loi binomiale.

3.4 Inégalités probabilistes

[ Proposition 48 — Inégalité de Markov ]

Soit X une v.a.r. positive et d’espérance finie. Alors

B(X)

Va>0, P(X >a)<

Démonstration. Partir de la définition de E(X) et séparer les termes de la somme suivant si z < a ou
x> a. |

Proposition 49 — Inégalité de Bienaymé-Tchebychev }

Soit X une v.a.r. admettant une variance. Alors

V(X
Ve 0, P(X - BX)| e < L)
€
Démonstration. Inégalité de Markov avec la v.a.r. |X — E(X)}2 qui est bien positive, et a = £2. d

Cette inégalité permet d’évaluer la probabilité que X prenne une valeur éloignée de sa moyenne.

[ Proposition 50 — Loi faible des grands nombres ]

n
Soit (X,,)n>1 une suite i.i.d. de variables aléatoires admettant une variance. On note S, = ZXk,
k=1
m = E(X1) et 02 = V(X1). Alors

n—-+00

S,
Ve > 0, P<’"—m‘>e> — 0.
n

Démonstration. Par linéarité de lespérance, F(S,/n) = m. Par indépendance des X; et la prop. 46,
V(Sp/n) = %2 On applique alors 'inégalité de Bienaymé-Tchebychev avec X = S, /n. a

En particulier, cela signifie que les fréquences observées convergent vers ’espérance, ce qui justifie I'in-
terprétation de cette derniére comme une moyenne.

Par exemple, si on lance un tres grand nombre de fois un dé équilibré, les fréquences d’apparition de
chaque face tendent chacune vers 1/6.
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4 Fonctions génératrices

Pour cette derniére partie, on ne considere que des variables aléatoires a valeurs dans N.

[ Définition 51 — Fonction génératrice ]

Soit X un v.a.r. a valeurs dans N.
On appelle fonction génératrice de X la série entiere

Gx(t)=E(tY) = JiOP(X = n)t".
n=0

Si X ne prend qu'un nombre fini de valeurs, Gx(t) est polynomiale en ¢.

Proposition 52 — Convergence et régularité de la fonction génératrice }

Soit X un v.a.r. & valeurs dans N. La série entiere définissant G x vérifie :
1. Le rayon de convergence R vérifie R > 1.
. Sa somme Gx est définie en 1 (et on a Gx (1) =1).
. Elle convergence normalement sur [—1;1]. Par conséquent, sa somme G x est continue sur [—1;1].

2
3
4. Sa somme Gx est de classe C*° sur son disque ouvert de convergence.
5

1
. En particulier, pour tout n € N, P(X =n) = —‘Gg?) (0) donc la loi de X est entierement déterminée
n!

par sa fonction génératrice.

Démonstration. 1+2. Observer que Gx (1) = 1. 3. En notant f,,: t — P(X =n)t", on a || fullec, [—1:1) =
P(X =n) qui est le terme général d’une série convergente. 44-5. Théoréme de dérivation terme a terme
des séries entiéres. Qa

[ Proposition 53 — Fonction génératrice des lois usuelles J

o Si X ~ A(p), alors Gx(t) =1—p+ pt.
o Si X ~ #A(n,p), alors Gx(t) = (1 — p+ pt)".

pt 1
B = >1
==y avec IR 1—p>

o Si X ~ 2()),alors Gx(t) = XD avec R = +o0.

e Si X ~¥(p), alors Gx(t) =

Démonstration. Ce n’est pas a proprement parlé un résultat de cours, il faut savoir les recalculer rapi-
dement lorsqu’on en a besoin, cela découle a chaque fois de la définition. d

Proposition 54 — Espérance et variance via la fonction génératrice J

Soit X un v.a.r. a valeurs dans N.
1. On a X d’espérance finie si et seulement si Gx est dérivable en 1. Dans ce cas, E(X) = G’y (1).

2. Si Gx est deux fois dérivable en 1, alors X admet une espérance et on a

G%(1) = B(X(X — 1)), dou V(X)=G%(1)+G%(1) -G’ (1)

Démonstration. 1. Si E(X) est finie alors la série > nP(X = n) converge donc, avec la notation de la
prop. 52, > f/ converge normalement sur [—1;1]. Le théoréme de dérivation terme a terme des séries de
fonctions conclut. et 2. Non exigibles. u
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Proposition 55 — Fonction génératrice d’'une somme de v.a. indépendantes ]

e Soient X et Y deux v.a.r. a valeurs dans N indépendantes.

On a, sous réserve de convergence, Gxiy = Gx X Gy.

o Plus généralement, si X1, ..., X,, sont des v.a.r. a valeurs dans N indépendantes, alors Gx, ..+ x, =
GX1 Xoee XGXn'

Démonstration. Lemme des coalitions donne X et ¥ indépendantes et on utilise la prop. 36. d

[ Exemple 56 — Retrouver la fonction génératrice d’une binomiale a partir de celle d’une loi de Bernoulli. J

Exemple 57 — Soient X ~ P(\) et Y ~ P(u) indépendantes. A l'aide des fonctions génératrices,
donner la loi de X +Y.
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